Ensembles et Applications

A.Belcaid

École Nationale des Sciences Appliqués.

19 octobre 2020

Apperçu du cours

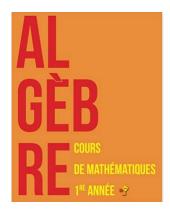
- Ensembles et Applications.
 - Ensembles.
 - Applications.
 - Injection/Surjection/Bijection.
 - Ensembles finis.
 - Relations d'équivalence.

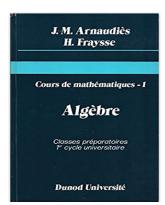
Nombres Complexe

- Définition.
- Equation de second ordre.
- Trigonométrie.
- Relation avec la géométrie.

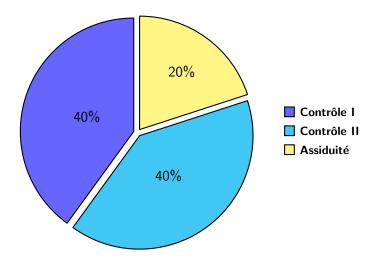
Théorie de groupes

- Groupe.
- Sous groupes.
- Morphisme de groupe.
- Groupe de permutation.
- Polynômes
 - Définition.
 - Arithmétique sur les polynômes.
 - Racine de polynômes.
 - Fractions rationnelles.





Note du module



Platforme de discussion

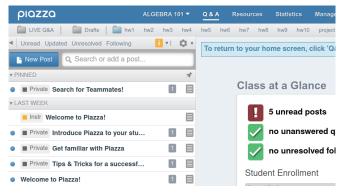


Figure: Plateforme de discussion

https://piazza.com/class/l96sp61sjyj6lr

Ensembles

Dans votre apprentissage de mathématiques, vous avez utiliser les ensembles suivants:

Ensemble des nombres entiers naturels:

$$\mathbb{N} = \{0, 1, 2, 3, \ldots\}$$

Ensemble des nombres entiers relatifs:

$$\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

Ensemble des nombre rationnels:

$$\mathbb{Q} = \{ \frac{p}{q} \mid p \in \mathbb{Z}, q \in \mathbb{N} \setminus \{0\} \}$$

- **Solution** Ensemble des **réels** \mathbb{R} comme $\sqrt{2}$, π , et $\log(2)$.
- ⑤ Finalement l'ensemble des nombres complexes C.

Définition

 Un ensemble est une collection d'objets mathématiques (éléments) rassemblées selon une ou plusieurs propriétés mathématiques.

Définition

- Un ensemble est une collection d'objets mathématiques (éléments) rassemblées selon une ou plusieurs propriétés mathématiques.
- Ces propriétés seront suffisantes pour affirmer si un élément appartient a cet ensemble.

Définition

- Un ensemble est une collection d'objets mathématiques (éléments) rassemblées selon une ou plusieurs propriétés mathématiques.
- Ces propriétés seront suffisantes pour affirmer si un élément appartient a cet ensemble.

Exemples

Définition

- Un ensemble est une collection d'objets mathématiques (éléments) rassemblées selon une ou plusieurs propriétés mathématiques.
- Ces propriétés seront suffisantes pour affirmer si un élément appartient a cet ensemble.

Exemples

• Ensemble des couleurs {rouge, vert, bleu}.

Définition

- Un ensemble est une collection d'objets mathématiques (éléments) rassemblées selon une ou plusieurs propriétés mathématiques.
- Ces propriétés seront suffisantes pour affirmer si un élément appartient a cet ensemble.

Exemples

- Ensemble des couleurs {rouge, vert, bleu}.
- Ensemble des nombres pairs:

$$P = \{n \in \mathbb{N} \mid 2 \text{ divise } n\}$$

Définition

- Un ensemble est une collection d'objets mathématiques (éléments) rassemblées selon une ou plusieurs propriétés mathématiques.
- Ces propriétés seront suffisantes pour affirmer si un élément appartient a cet ensemble.

Exemples

- Ensemble des couleurs {rouge, vert, bleu}.
- Ensemble des nombres pairs:

$$P = \{n \in \mathbb{N} \mid 2 \text{ divise } n\}$$

0

$$\{x \in \mathbb{R} \mid |x - 2| < 1\}$$

Définition

- Un ensemble est une collection d'objets mathématiques (éléments) rassemblées selon une ou plusieurs propriétés mathématiques.
- Ces propriétés seront suffisantes pour affirmer si un élément appartient a cet ensemble.

Exemples

- Ensemble des couleurs {rouge, vert, bleu}.
- Ensemble des nombres pairs:

$$P = \{n \in \mathbb{N} \mid 2 \text{ divise } n\}$$

0

$$\{x \in \mathbb{R} \mid |x - 2| < 1\}$$

0

$$\{x \in \mathbb{R} \mid x^2 - 1 = 0\}$$

Appartenance

ullet Si un en élément x appartient à un ensemble u. On écrit:

$$x \in E$$
 (1)

Appartenance

• Si un en élément x appartient à un ensemble E. On écrit:

$$x \in E$$
 (1)

Dans le cas contraire:

$$x \notin E$$
 (2)

Appartenance

• Si un en élément x appartient à un ensemble E. On écrit:

$$x \in E$$
 (1)

Dans le cas contraire:

$$x \notin E$$
 (2)

Exemple

Appartenance

• Si un en élément x appartient à un ensemble E. On écrit:

$$x \in E$$
 (1)

Dans le cas contraire:

$$x \notin E$$
 (2)

Exemple

Appartenance

• Si un en élément x appartient à un ensemble E. On écrit:

$$x \in E$$
 (1)

Dans le cas contraire:

$$x \notin E$$
 (2)

Exemple

 $2 \in \mathbb{N}$. $-2 \notin \mathbb{N}$. $\sqrt{2} \notin \mathbb{Q}$.

Appartenance

• Si un en élément x appartient à un ensemble E. On écrit:

$$x \in E$$
 (1)

Dans le cas contraire:

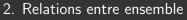
$$x \notin E$$
 (2)

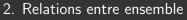
Exemple

$$2 \in \mathbb{N}$$
. $-2 \notin \mathbb{N}$. $\sqrt{2} \notin \mathbb{Q}$.

Ensemble vide

Un ensemble **particulier** est l'ensemble **vide** note ∅ et qui ne contient aucun élément.





Inclusion

On note $\mathbf{E} \subset \mathbf{F}$ si tous les éléments de E sont dans F.

$$E \subset F \iff \forall x \in E \quad x \in E \implies x \in F$$
 (3)

Inclusion

On note $\mathbf{E} \subset \mathbf{F}$ si tous les éléments de E sont dans F.

$$E \subset F \iff \forall x \in E \quad x \in E \implies x \in F$$
 (3)

 On dit aussi que E est un sous ensemble ou une partie de F.

Inclusion

On note $\mathbf{E} \subset \mathbf{F}$ si tous les éléments de E sont dans F.

$$E \subset F \iff \forall x \in E \quad x \in E \implies x \in F$$
 (3)

 On dit aussi que E est un sous ensemble ou une partie de F.

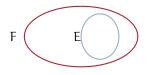


Figure: Inclusion

Inclusion

On note $\mathbf{E} \subset \mathbf{F}$ si tous les éléments de E sont dans F.

$$E \subset F \iff \forall x \in E \quad x \in E \implies x \in F$$
 (3)

 On dit aussi que E est un sous ensemble ou une partie de F.

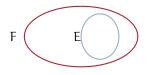


Figure: Inclusion

Inclusion

On note $\mathbf{E} \subset \mathbf{F}$ si tous les éléments de E sont dans F.

$$E \subset F \iff \forall x \in E \quad x \in E \implies x \in F$$
 (3)

 On dit aussi que E est un sous ensemble ou une partie de F.

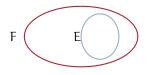


Figure: Inclusion

Inclusion

On note $\mathbf{E} \subset \mathbf{F}$ si tous les éléments de E sont dans F.

$$E \subset F \iff \forall x \in E \quad x \in E \implies x \in F$$
 (3)

 On dit aussi que E est un sous ensemble ou une partie de F.

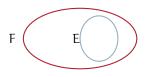


Figure: Inclusion

Négation

 $E \not\subset F \iff$

Inclusion

On note $\mathbf{E} \subset \mathbf{F}$ si tous les éléments de E sont dans F.

$$E \subset F \iff \forall x \in E \quad x \in E \implies x \in F$$
 (3)

 On dit aussi que E est un sous ensemble ou une partie de F.

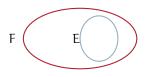


Figure: Inclusion

Négation

 $E \not\subset F \iff$

Inclusion

On note $\mathbf{E} \subset \mathbf{F}$ si tous les éléments de E sont dans F.

$$E \subset F \iff \forall x \in E \quad x \in E \implies x \in F$$
 (3)

 On dit aussi que E est un sous ensemble ou une partie de F.

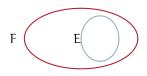


Figure: Inclusion

Négation

$$E \not\subset F \iff (\exists x \in E) \text{ tel que } x \not\in F$$
 (4)

Égalité et Complémentaire

$$E = F \iff (E \subset F) \text{ et } (F \subset E)$$
 (5)

A.Belcaid 10/20

Égalité et Complémentaire

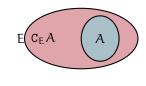
Égalité

$$E = F \iff (E \subset F) \text{ et } (F \subset E)$$
 (5)

Complémentaire

Si $A \subset E$, on note son **complémentaire** C_EA l'ensemble:

$$C_E A = \{ x \in E \mid x \notin A \} \tag{6}$$



• Dans la littérature on trouve aussi les notations A^c , \overline{A} ou $E \setminus A$.

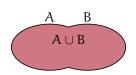
Union Intersection

Union

Pour deux ensembles A et $B \subset E$, On note **l'union** $A \cup B$:

$$A \cup B = \{x \in E \mid x \in A \text{ ou } x \in B\}$$
 (7)

On doit mentionner que le \mathbf{ou} n'est pas exclusive, i.e x peut appartenir ou deux ensembles en même temps.

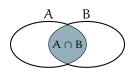


Intersection

Pour deux ensembles A et $B \subset E$, On note **l'intersection** $A \cap B$:

$$A \cap B = \{x \in E \mid x \in A \text{ et } x \in B\}$$
 (8)

Si $A \cap B = \emptyset$, on dit que A et B sont **disjoints**

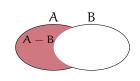


A.Belcaid 11/20

Différence

Pour deux ensembles A et $B \subset E$, On note la différence A - B:

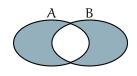
$$A - B = \{x \in E \mid x \in A \text{ et } x \notin B\}$$
 (9)



Différence symmétrique

Pour deux ensembles A et $B \subset E$, On note la différence symmétrique $A\Delta B$:

$$A\Delta B = (A \cup B) \ (B \cap A) \tag{10}$$



A.Belcaid 12/20

Mini Exercices

Mini Exercices

- ① Donner l'ensemble {1, 2, 3} ∪ {3, 4, 5}
- ② Calculer l'ensemble $\{1, 2, 3\} \cap \{3, 4, 5\}$
- **3** Calculer $\{1, 2, 3\} \{3, 4, 5\}$.
- **1** Donner $\{1, 2, 3\} \Delta \{3, 4, 5\}$.
- **⑤** Soit $B = C_E A$, evaluer $A \cup B$ et $A \cap B$.

Intersection

Etant donné les deux ensembles:

$$A = \{2, \alpha^2 - 4\alpha + 7\}$$

$$B = \{\alpha + 1, \alpha^2 + 1, \alpha^2 - 1\}$$

Sachant que $A \cap B = \{4\}$, quelle est la valeur de α ?

A.Belcaid 13/20

Soit A, B et C des ensembles de E.

Règles de calcul

Soit A, B et C des ensembles de E.

Règles de calcu

Commutativité:

Soit A, B et C des ensembles de E.

Règles de calcu

- Commutativité:
 - \bullet $A \cup B = B \cup A$

Soit A, B et C des ensembles de E.

Règles de calcul

- Commutativité:
 - \bullet $A \cup B = B \cup A$
 - $A \cap B = B \cap A$

Soit A, B et C des ensembles de E.

Règles de calcu

- Commutativité:
 - $\bullet \ A \cup B = B \cup A$
 - $A \cap B = B \cap A$
- Associativité:

Soit A, B et C des ensembles de E.

Règles de calcul

- Commutativité:
 - $A \cup B = B \cup A$
 - $A \cap B = B \cap A$
- Associativité:
 - $\bullet \ (A \cup B) \cup C = A \cup (B \cup C)$

Soit A, B et C des ensembles de E.

- Commutativité:
 - \bullet $A \cup B = B \cup A$
 - \bullet $A \cap B = B \cap A$
- Associativité:

 - $(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$

Soit A, B et C des ensembles de E.

Règles de calcul

- Commutativité:
 - \bullet $A \cup B = B \cup A$
 - \bullet $A \cap B = B \cap A$
- Associativité:

 - $(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$
- Idempotente:

Soit A, B et C des ensembles de E.

Règles de calcul

- Commutativité:
 - $A \cup B = B \cup A$
 - \bullet $A \cap B = B \cap A$
- Associativité:
 - $(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$
- Idempotente:
 - \bullet $A \cup A = A$

Soit A, B et C des ensembles de E.

Règles de calcul

- Commutativité:
 - $A \cup B = B \cup A$
 - \bullet $A \cap B = B \cap A$
- Associativité:
 - $(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$
- Idempotente:
 - \bullet $A \cup A = A$
 - $A \cap A = A$

Soit A, B et C des ensembles de E.

Règles de calcul

Soit A, B et C des ensembles de E.

Règles de calcul

• Distributivité:

Soit A, B et C des ensembles de E.

Règles de calcu

- Distributivité:
 - $\bullet \ A \cup (B \cap C) = (A \cup B) \cap (A \cap C)$

Soit A, B et C des ensembles de E.

- Distributivité:

 - $A \cup (B \cap C) = (A \cup B) \cap (A \cap C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cup C)$

Soit A, B et C des ensembles de E.

- Distributivité:

 - $A \cup (B \cap C) = (A \cup B) \cap (A \cap C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cup C)$
- Loi de Morgan:

Soit A, B et C des ensembles de E.

Règles de calcul

- Distributivité:

 - $A \cup (B \cap C) = (A \cup B) \cap (A \cap C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cup C)$
- Loi de Morgan:
 - $(A \cup B)^C = A^C \cap B^C$

Soit A, B et C des ensembles de E.

Règles de calcul

- Distributivité:

 - $A \cup (B \cap C) = (A \cup B) \cap (A \cap C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cup C)$
- Loi de Morgan:
 - $(A \cup B)^C = A^C \cap B^C$
 - $(A \cap B)^C = A^C \cup B^C$

$$\bullet \ \, \mathsf{Prouvons} \ \mathsf{que} \ \, \underbrace{A \cup (B \cap C)}_{\mathsf{E}} = \underbrace{(A \cup B) \cap (A \cup C)}_{\mathsf{F}}$$

- Prouvons que $\underbrace{A \cup (B \cap C)}_{E} = \underbrace{(A \cup B) \cap (A \cup C)}_{F}$
- Supposons que $x \in E \implies x \in A$ ou $x \in (B \cap C)$:

$$x \in A \implies x \in (A \cup B)$$
 (11)

$$x \in A \implies x \in (A \cup C)$$
 (12)

Selon (11) et (12), on peut conclure que $x \in (A \cup B) \cap (A \cup B)$. Ainsi:

$$\mathbf{E} \subset \mathbf{F} \tag{13}$$

- Prouvons que $\underbrace{A \cup (B \cap C)}_{E} = \underbrace{(A \cup B) \cap (A \cup C)}_{F}$
- Supposons que $x \in E \implies x \in A$ ou $x \in (B \cap C)$:

$$x \in A \implies x \in (A \cup B)$$
 (11)

$$x \in A \implies x \in (A \cup C)$$
 (12)

Selon (11) et (12), on peut conclure que $x \in (A \cup B) \cap (A \cup B)$. Ainsi:

$$\mathbf{E} \subset \mathbf{F} \tag{13}$$

• Supposons que $x \in F \implies x \in (A \cup B)$ et $x \in (A \cup C)$. On traite alors deux cas:

•
$$x \in A \implies x \in A \cup (B \cap C) \implies x \in E$$

•
$$x \notin A \implies x \in B \text{ et } x \in C \implies x \in (B \cap C) \implies x \in E$$

(14)

- Prouvons que $\underbrace{A \cup (B \cap C)}_{\mathsf{E}} = \underbrace{(A \cup B) \cap (A \cup C)}_{\mathsf{F}}$
- Supposons que $x \in E \implies x \in A$ ou $x \in (B \cap C)$:

$$x \in A \implies x \in (A \cup B)$$
 (11)

$$x \in A \implies x \in (A \cup C)$$
 (12)

Selon (11) et (12), on peut conclure que $x \in (A \cup B) \cap (A \cup B)$. Ainsi:

$$\mathbf{E} \subset \mathbf{F} \tag{13}$$

• Supposons que $x \in F \implies x \in (A \cup B)$ et $x \in (A \cup C)$. On traite alors deux cas:

•
$$x \in A \implies x \in A \cup (B \cap C) \implies x \in E$$

•
$$x \notin A \implies x \in B \text{ et } x \in C \implies x \in (B \cap C) \implies x \in E$$

Selon (13) et (14), on conclut que:

$$\mathbf{E} = \mathbf{F} \tag{15}$$

(14)

Mini Exercices

Mini Exercices

- ① Évaluer $A \cup \emptyset$
- $② \ \, \mathsf{Calculer} \,\, \mathsf{A} \cap \emptyset$

Mini Exercices

- ② Calculer $A \cap \emptyset$

Mini Exercices

- ① Évaluer $A \cup \emptyset$
- ② Calculer $A \cap \emptyset$

4 Quel sera l'ensemble $(A^c)^c$.

Mini Exercices

- **○** Évaluer $A \cup \emptyset$
- ② Calculer $A \cap \emptyset$
- 4 Quel sera l'ensemble $(A^c)^c$.

Mini Exercices

- \bigcirc Évaluer $A \cup \emptyset$
- ② Calculer $A \cap \emptyset$
- **Q** Quel sera l'ensemble $(A^c)^c$.
- **○** On suppose que $E = \{1, 2, ..., 9\}$, et soit $A = \{2, 5, 7, 3, 1\}$ et $B = \{9, 8, 7, 5, 2\}$. En utilisant la loi de **Morgan**, calculer $A^c \cup B^c$.

Mini Exercices

- \bigcirc Évaluer $A \cup \emptyset$
- \bigcirc Calculer $A \cap \emptyset$
- 4 Quel sera l'ensemble $(A^c)^c$.
- **○** On suppose que $E = \{1, 2, ..., 9\}$, et soit $A = \{2, 5, 7, 3, 1\}$ et $B = \{9, 8, 7, 5, 2\}$. En utilisant la loi de **Morgan**, calculer $A^c \cup B^c$.
- O Donner une démonstration des deux lois de Morgan.

Ensemble des parties

Ensemble des parties

Pour un ensemble E, on note $\mathcal{P}(\mathbf{E})$ l'ensemble de tous les sous ensembles (parties) de E.

Par exemple, pour l'ensemble $E = \{1, 2, 3\}$, on as :

$$\mathcal{P}(\mathsf{E}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$$
 (16)

Ensemble des parties

Ensemble des parties

Pour un ensemble E, on note $\mathcal{P}(\mathbf{E})$ l'ensemble de tous les sous ensembles (parties) de E.

Par exemple, pour l'ensemble $E = \{1, 2, 3\}$, on as :

$$\mathcal{P}(\mathsf{E}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$$
 (16)

Exercice

Donner l'ensemble $\mathcal{P}(\{a, b, c, d\})$

Produit cartésien

Définition

Soit deux ensemble E et F, on appelle **produit cartésien** de E et F l'ensemble:

$$E \times F = \{(x, y) \mid x \in E \text{ et } y \in F\}$$
(17)

Produit cartésien

Définition

Soit deux ensemble E et F, on appelle **produit cartésien** de E et F l'ensemble:

$$E \times F = \{(x, y) \mid x \in E \text{ et } y \in F\}$$
 (17)

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{ (x, y) \mid x, y \in \mathbb{R} \}$$

Produit cartésien

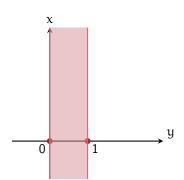
Définition

Soit deux ensemble E et F, on appelle **produit cartésien** de E et F l'ensemble:

$$E \times F = \{(x, y) \mid x \in E \text{ et } y \in F\}$$
 (17)

$$\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{ (x, y) \mid x, y \in \mathbb{R} \}$$

$$\mathbb{R} \times [0,1] = \{(x,y) \mid x \in \mathbb{R} \text{ et } 0 \leqslant y \leqslant 1\}$$



Mini Exercices

A.Belcaid 20/20

Mini Exercices

• Représenter graphiquement l'ensemble suivant:

$$(]0,1[\cup]2,3[)\times[-1,1] \tag{18}$$

<u>A.Belcaid</u> 20/20

Mini Exercices

• Représenter graphiquement l'ensemble suivant:

$$(]0,1[\cup]2,3[)\times[-1,1] \tag{18}$$

• Même question pour:

$$(\mathbb{R} - [0, 1]) \times ([0, 1]) \tag{19}$$

<u>A.Belcaid</u> 20/20

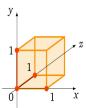
• Représenter graphiquement l'ensemble suivant:

$$(]0,1[\cup]2,3[)\times[-1,1] \tag{18}$$

• Même question pour:

$$(\mathbb{R} - [0, 1]) \times ([0, 1]) \tag{19}$$

• Exprimer le cube suivant en utilisant le produit:



<u>A.Belcaid</u> 20/20